
https://clipcode.net/mentoring

Semantic Kernel Solution Architecture
Angular Super app+selection of micro apps, OpenAPI, .NET Microservices,

Semantic Kernel, Azure OpenAI, Azure AI Search, Nest.js/Node Microservices

Angular 19

.NET 9

Nest.js/Node

API Model

User Model

API Model

Azure OpenAI
Azure AI Search
(vector database)E

xt
er

n
al

C
lo

u
d

S
er

vi
ce

s (written in TypeScript,
runs on client only)

(written in TypeScript,
runs on server only)

(w
ri

tt
en

 in
C

#,
 r

u
n

s
on

se
rv

er
 o

n
ly

)

Interaction Model

R
E

S
T

 A
P

I

Semantic Kernel Solution Architecture (imagine solution is called My Stack)

AI Model
(custom copilot,

autonomous agents)

(written in TypeScript,
can run on client or server)

Coordination Model
(commands, queries, events)

Domain Model
(core business logic)

Report Model

Workflow Model

Persistence Model
(save/load data to/from

JSON-LD knowledge graph)

My Dotnet Stack (microservice) My Nest Stack (microservice)

My Ngx Stack (web app)

My TS Stack (library)

REST API
L

ibrary Im
port

https://clipcode.net/mentoring

Requirements

We need to build a large-scale enterprise solution or
competitive commercial product, that is meant to last 5-7
years (with regular updates) with high number of users.

We wish to use the most advanced web UI framework for
building rich user experiences, which is Angular, with code
written in TypeScript.

We wish to be able to use the most advanced AI framework,
which is Semantic Kernel. This supports a number of
languages, the furthest along being C#. We wish to use it to
build powerful custom AI copilot and autonomous AI agents.

We wish to write as little code as possible (the best engineer
writes the least amount of code!) – specifically we do not wish
to have to re-code the same domain logic for client and server.

We wish to be able to run the domain models - the core
business logic of the micro apps – on both the client and the
server (so that we can BOTH offer the capability of running
offline (PWA app) and run un-attended from the cloud (e.g.
have the cloud-based AI autonomous agent, automatically
responding to an event at 2am with no user present, calling
into the cloud-based domain models as needed).

We wish to be able to generate reports (PDF, Word, Excel, ..)
while running offline (no cloud connection) and create in the
cloud (with no user present) automated end-of-month reports.

We wish to be able to execute workflows (sets of discrete
actions) on the client and in the cloud.

Architectural Approach

Our key architectural choices include:

● Keep design as simple as possible
● Use of domain driven design
● As much as makes sense, have code that runs anywhere
● Use of JSON-LD knowledge graphs as data format
● Use of super app and family of micro apps
● Use of Semantic Models (User Model, AI Model, Report

Model, ..) Sub-divide functionality into semantic models

Often in-experienced teams devise from the outset
un-neccessarily complex architectures that simply are not
needed, or not needed at present. If a solution becomes
commercially very successful in future, it is likely there will be
plenty of budget to have a bigger team and work on larger
designs; but at the beginning when there is a smaller team
and everyone is under time pressure to quickly deliver, it make
a whole lot of sense to keep everything as simple as possible,
to suit the immediate needs of the project now and say six
months into the future (where we might have reasonably clear
visibility of what is useful/needed).

The core business logic should be separated out from
infrastructural and UI code, in the form of a clean domain
model. To satisfy the requirements, we want this to be able to
run on both the client and the server.

The data representation format should be flexible, AI-friendly
and take a modern approach, hence the use of JSON-LD
knowledge graphs.

Delivering the solution as a super app composed of a flexible
family of micro apps offers a number of benefits.

The super app provides the superstructure within which the
micro apps run and offers some shared functionality (way to
sign-in/sign-out, notifications, a launcher to view available
micro apps and to start one; access to content /
documentation, shared search/filter and more).

The micro apps are for discrete pieces of functionality. Some
can offer common functionality (User Manager, Report
Manager, Tracker) and some are “premium” and are specific to
a solution. The range of micro apps may well evolve over 5-7
years of the lifespan of a solution. Also some micro apps may
be reused in different super apps. Micro apps can – LEGO like
– be added to a super app as appropriate.

Software should be structured based on semantic models. The
idea with models is that they are representations of a solution
from a particular viewpoint (that are consistent with each
other). A good solution delivers a range of semantic models
that work together. Sample include: Domain Model, Error
Model, Diagnostics Model, Interaction Model and Policy Model.

Technology Selection

For programming languages, we select two: TypeScript for UI
development and any code that needs to run (unchanged) on
both client and server; and C# for code that can run on server
only.

For AI framework, we pick Microsoft’s Semantic Kernel. This is
a rapidly developing state-of-the-art AI orchestration
framework with support for a range of connectors and latest
ideas such as agents. The main alternative is LangChain, but
SK has more of what we need and can be programmed in C#.

For UI framework, we pick Angular. For large solutions,
Angular is significantly better than competitors such as React
(suffers from “library churn”) and Blazor (e.g. nothing in either
similar to the open source Angular Material, released in
lockstep with six-monthly Angular updates).

For running TypeScript-based domain models on server, we
pick Nest.js (not to be confused with totally different but
similarly named Next.js). A developer with experience of
Angular will very quickly get up to speed with Nest.js.

Clipcode Mentoring
This document is a sample of the information provided as part of a subscription to Clipcode Mentoring. Here is another, that will be
of use to those interested in a deeper understanding of how the internals of Semantic Kernel works:

● https://clipcode.net/assets/academy/mentoring/semantic-kernel-source-guided-tour.pdf

Clipcode Mentoring is intended to help developer teams quickly get up to speed using Semantic Kernel to build powerful custom AI
solutions. to learn more and to subscribe, please visit:

● https://clipcode.net/mentoring

https://clipcode.net/mentoring
https://clipcode.net/assets/academy/mentoring/semantic-kernel-source-guided-tour.pdf
https://nestjs.com/
https://angular.io/
https://learn.microsoft.com/en-us/semantic-kernel/overview/

	Semantic Kernel Solution Architecture
	Clipcode Mentoring

